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ABSTRACT 

In the modern days at university, researchers use different web 

applications to collaborate in their teams. Students use similar 

applications to obtain lecture notes, additional reading 

materials and hand in their solutions to assignments. 

In this paper usage patterns of those applications are studied. 

Section 2 describes how the underlying data was collected and 

the characteristics were obtained. In section 3, the patterns are 

discussed and results presented. Detailed graphs can be found 

in the appendix. 

1. INTRODUCTION 

Traffic analysis is done for various reasons such as traffic 

classification, anomaly detection and profiling.  When 

classifying traffic, researchers and network operators want to 

find out about the services that are operated on their networks 

and what characteristics those services have. Anomaly 

detection, the second objective of traffic analysis, deals with 

intruders and attacks. One wants to detect unusual usage 

patterns of the network and conclude whether attacks are 

currently being performed and if hosts on the network are 

compromised. Thirdly, network profiling is done to measure 

the loads and usage of network links. 

In this paper, we study three different e-learning and e-

collaboration services of ETH Zurich. BSCW is a web 

application for team collaboration. Researchers of ETH Zurich 

and other European universities use BSCW to share their 

research documents and work on new papers. Moodle and 

ILIAS [1] are both web-based e-learning applications where 

lecturers and teachers can distribute problem sets, assignments 

and additional course material. Students use Moodle and 

ILIAS to hand in assignments. Each application is operated on 

a separate server at ETH Zurich and is studied in the following 

individually. 

We have chosen those three services because they are well 

known at ETH and more and more courses are getting 

supported by our e-learning applications. In order to provide 

the needed performance, stability and security for more 

students, we will need to upgrade servers and infrastructure. 

To do that, it will be very helpful to understand how the 

services are used and how the network usage is characterized. 

Additionally, the packet level traces give us the chance to 

detect anomalies and attacks of our servers. By measuring the 

network activities permanently, one could implement an 

intrusion detection system based on this data. 

2. PROCEDURES AND TOOLS 

As the basis for the traffic analysis, we had to obtain packet 

level traces of the services. There is a variety of tools to 

collect and analyze such traces. For this project, we have used 

tcpdump [2] to record the packet level traces. tcpdump was 

run on each application server individually and sniffed the 

headers of all Ethernet frames on the server’s Ethernet 

interface. Only the first 68 bytes of the payload were captured 

to minimize the total amount of data. The tool was run during 

one week and collected a total of 52 GB of data. To analyze 

this amount of data, one needs to choose and design the tools 

carefully. To minimize memory and computational resources, 

we decided to split all traces into files of 100 MB size each. 

This was done by setting tcpdump’s option –C to 100 MB. 

Initially, we had the idea to use command line utilities such as 

sed, grep, sort and uniq to analyze the packets. However 

it turned out that especially sed and sort do not perform 

well with large amounts of data. Therefore, we had to design 

the tools for the analysis more carefully. We developed a 

series of Perl scripts. 

The process was divided into three separate steps. In the first 

step, each file was analyzed individually by the first Perl 

script. The script loads the dumped file by using Perl’s 

Net::TcpDumpLog [3] module and then extracts the 

protocols, IP addresses and ports, packet sizes and the total 

number of packets per IP of the trace. Those characteristics are 

aggregated over a 10 minute window and then stored to text 

files using Perl’s Data::Dumper [3] module.  

This approach has the advantage that not all traces have to be 

analyzed at the same time and on the same host. It took around 

3 to 5 minutes to process one file of 100 MB. To speed up the 

whole first step, we have distributed all traces to four 

workstations and let the script run during one night in parallel 

on those hosts. 

In the second step, all the written text files from the first step 

were re-evaluated and aggregated to obtain continuous 

characteristics over the whole period of one week. This 

requires much less computational effort, because the files 

written by Data::Dumper [3] can be read in by using Perl’s 

eval() method. Once we had computed the individual 

characteristics in the first step, it took us less than one hour in 

total to aggregate all characteristics of all services. 

In the last step, the aggregated data was plotted using 

gnuplot [4]. This tool deals very well with big data sets. It 

has the advantage that the data does not have to be sorted, 

because gnuplot can draw points on a 2D graph in an 

arbitrary order. The drawn plots can be found in the appendix. 

For this project, no special actions to guarantee privacy and 

anonymity of the data in the traces have been taken. Instead, 

only the appended plots are distributed publicly but not the 

traces itself. 



During the capturing of the traces, parts of the dumped files 

were already moved to another host via SSH. In addition to 

that, disk accesses to NFS disks and the transfer of log files to 

the central logging server also generated some traffic 

overhead. All this traffic, which is not of interest for this 

project, has been filtered out in the first Perl script. 

During the night of the 27th October, no traces could be 

collected due to server maintenance and upgrades. Thus, there 

is no data available within this period. 

3. RESULTS 

The measured data had a traffic mix of 99.52% TCP and 

0.28% UDP. For the following plots, we considered only 

incoming TCP connections. All applications are plotted 

separately. The data is aggregated in windows of 10 minutes. 

The detailed plots of the characteristics can be found in the 

appendix. 

The first thing to notice is the daily pattern. In all graphs, one 

can clearly see that there is a higher usage during the day and 

a lower usage in the night. In average, there are around 750 to 

1000 flows per 10 minutes during the day, while we have only 

a few ones in the night hours. If the number of flows would 

significantly increase in a very short time period, this could be 

a hint to a virus outbreak on the host. This has been done 

before in the DDoSVax project at ETH Zurich [5]. 

An interesting characteristic is the number of source IPs. This 

gives a good impression of how many users are concurrently 

accessing the web applications. For BSCW and ILIAS, there 

are between 10 and 20 users during the day. Moodle has a 

maximum of up to 50 concurrent users during the day hours. 

Even in the night there are some source IPs accessing all three 

services. This does not necessarily mean that those requests 

come from humans, they could also stem from automated 

robots, for example crawlers of search engines and our 

internal monitoring agent.  

In the future, we expect a much higher number of users on our 

system, because there will be e-assessments and online exams 

for whole classrooms soon. 

By considering the plot of the throughput, there is an average 

of around 1 Mbps of incoming traffic within 10 minutes. Still, 

temporal maxima could be much higher than 1 Mbps. Plots 

such as this one could be used for network profiling purposes.  

When comparing throughput and the number of packets, there 

are a few obvious peeks visible. There can be different reasons 

for those peeks. It could be legitimate traffic, for example 

when students are handing in assignments shortly before a due 

date. On the other hand, these peeks could also reveal 

attackers. 

When people are monitoring throughput and the number of 

packets during a virus outbreak, one can clearly see a rise in 

those characteristics. They can thus be used for profiling 

purposes, but also for anomaly detection.  

For the last plot, we split the numbers of packets into three 

groups: packets originating in Switzerland, those from the 

European Union, and the rest. To resolve the IP addresses to a 

geographical location we used the hostip.info service [6]. This 

service provides a simple HTTP API, which can be accessed 

easily with Perl.  

Most of the packets come from Switzerland; packets from EU 

play the second role. As all analyzed web applications are 

mainly targeted at students in Zurich in the case of Moodle 

and ILIAS, respectively European research groups in the case 

of BSCW, these patterns are not surprising. 

Besides the plots shown here, we could look at many other 

interesting characteristics. By looking at entropies of source 

IPs or ports, one could detect anomalies. Low entropy means 

that a lot of traffic originates from one IP or is targeted to one 

destination port. This would identify different viruses and 

worms [7].  

On the other hand, interarrival times and flow lengths would 

give more information about the browsing habits of the users. 

With such statistics, one could see how long a user remains 

active on the application and how many requests one makes 

during a certain time interval.  

These characteristics were not studied for this project but 

could be other interesting fields for further analysis. Because 

the initial packet level traces contain all needed information, 

one could easily modify the Perl scripts and obtain such 

statistics in short time. 

4. CONCLUSION 

While working with 52 GB of data, we experienced different 

problems and difficulties. The handling of such large files is 

cumbersome and requires a lot of computer power for the 

analysis. Collecting packet level traces of a core router would 

result in even bigger dump files. In traffic analysis, it is always 

a crucial point to be able to deal with large data sets 

efficiently. 

Still, by using carefully designed tools, we were able to extract 

interesting characteristics within a short time. Those 

characteristics will help us plan and design the next generation 

of e-learning and e-collaboration services, which will be able 

to deal with much larger numbers of users. 
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APPENDIX 

The plots shown in the appendix were discussed in section 3. 
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