
Traffic Analysis of E-Collaboration and E-Learning

Applications used at ETH Zurich
Benedikt Köppel

bkoeppel@ee.ethz.ch

supervised by Dr. Wolfgang Mühlbauer
wolfgang.muehlbauer@tik.ee.ethz.ch

ABSTRACT

In the modern days at university, researchers use different web

applications to collaborate in their teams. Students use similar

applications to obtain lecture notes, additional reading

materials and hand in their solutions to assignments.

In this paper usage patterns of those applications are studied.

Section 2 describes how the underlying data was collected and

the characteristics were obtained. In section 3, the patterns are

discussed and results presented. Detailed graphs can be found

in the appendix.

1. INTRODUCTION

Traffic analysis is done for various reasons such as traffic

classification, anomaly detection and profiling. When

classifying traffic, researchers and network operators want to

find out about the services that are operated on their networks

and what characteristics those services have. Anomaly

detection, the second objective of traffic analysis, deals with

intruders and attacks. One wants to detect unusual usage

patterns of the network and conclude whether attacks are

currently being performed and if hosts on the network are

compromised. Thirdly, network profiling is done to measure

the loads and usage of network links.

In this paper, we study three different e-learning and e-

collaboration services of ETH Zurich. BSCW is a web

application for team collaboration. Researchers of ETH Zurich

and other European universities use BSCW to share their

research documents and work on new papers. Moodle and

ILIAS [1] are both web-based e-learning applications where

lecturers and teachers can distribute problem sets, assignments

and additional course material. Students use Moodle and

ILIAS to hand in assignments. Each application is operated on

a separate server at ETH Zurich and is studied in the following

individually.

We have chosen those three services because they are well

known at ETH and more and more courses are getting

supported by our e-learning applications. In order to provide

the needed performance, stability and security for more

students, we will need to upgrade servers and infrastructure.

To do that, it will be very helpful to understand how the

services are used and how the network usage is characterized.

Additionally, the packet level traces give us the chance to

detect anomalies and attacks of our servers. By measuring the

network activities permanently, one could implement an

intrusion detection system based on this data.

2. PROCEDURES AND TOOLS

As the basis for the traffic analysis, we had to obtain packet

level traces of the services. There is a variety of tools to

collect and analyze such traces. For this project, we have used

tcpdump [2] to record the packet level traces. tcpdump was

run on each application server individually and sniffed the

headers of all Ethernet frames on the server’s Ethernet

interface. Only the first 68 bytes of the payload were captured

to minimize the total amount of data. The tool was run during

one week and collected a total of 52 GB of data. To analyze

this amount of data, one needs to choose and design the tools

carefully. To minimize memory and computational resources,

we decided to split all traces into files of 100 MB size each.

This was done by setting tcpdump’s option –C to 100 MB.

Initially, we had the idea to use command line utilities such as

sed, grep, sort and uniq to analyze the packets. However

it turned out that especially sed and sort do not perform

well with large amounts of data. Therefore, we had to design

the tools for the analysis more carefully. We developed a

series of Perl scripts.

The process was divided into three separate steps. In the first

step, each file was analyzed individually by the first Perl

script. The script loads the dumped file by using Perl’s

Net::TcpDumpLog [3] module and then extracts the

protocols, IP addresses and ports, packet sizes and the total

number of packets per IP of the trace. Those characteristics are

aggregated over a 10 minute window and then stored to text

files using Perl’s Data::Dumper [3] module.

This approach has the advantage that not all traces have to be

analyzed at the same time and on the same host. It took around

3 to 5 minutes to process one file of 100 MB. To speed up the

whole first step, we have distributed all traces to four

workstations and let the script run during one night in parallel

on those hosts.

In the second step, all the written text files from the first step

were re-evaluated and aggregated to obtain continuous

characteristics over the whole period of one week. This

requires much less computational effort, because the files

written by Data::Dumper [3] can be read in by using Perl’s

eval() method. Once we had computed the individual

characteristics in the first step, it took us less than one hour in

total to aggregate all characteristics of all services.

In the last step, the aggregated data was plotted using

gnuplot [4]. This tool deals very well with big data sets. It

has the advantage that the data does not have to be sorted,

because gnuplot can draw points on a 2D graph in an

arbitrary order. The drawn plots can be found in the appendix.

For this project, no special actions to guarantee privacy and

anonymity of the data in the traces have been taken. Instead,

only the appended plots are distributed publicly but not the

traces itself.

During the capturing of the traces, parts of the dumped files

were already moved to another host via SSH. In addition to

that, disk accesses to NFS disks and the transfer of log files to

the central logging server also generated some traffic

overhead. All this traffic, which is not of interest for this

project, has been filtered out in the first Perl script.

During the night of the 27th October, no traces could be

collected due to server maintenance and upgrades. Thus, there

is no data available within this period.

3. RESULTS

The measured data had a traffic mix of 99.52% TCP and

0.28% UDP. For the following plots, we considered only

incoming TCP connections. All applications are plotted

separately. The data is aggregated in windows of 10 minutes.

The detailed plots of the characteristics can be found in the

appendix.

The first thing to notice is the daily pattern. In all graphs, one

can clearly see that there is a higher usage during the day and

a lower usage in the night. In average, there are around 750 to

1000 flows per 10 minutes during the day, while we have only

a few ones in the night hours. If the number of flows would

significantly increase in a very short time period, this could be

a hint to a virus outbreak on the host. This has been done

before in the DDoSVax project at ETH Zurich [5].

An interesting characteristic is the number of source IPs. This

gives a good impression of how many users are concurrently

accessing the web applications. For BSCW and ILIAS, there

are between 10 and 20 users during the day. Moodle has a

maximum of up to 50 concurrent users during the day hours.

Even in the night there are some source IPs accessing all three

services. This does not necessarily mean that those requests

come from humans, they could also stem from automated

robots, for example crawlers of search engines and our

internal monitoring agent.

In the future, we expect a much higher number of users on our

system, because there will be e-assessments and online exams

for whole classrooms soon.

By considering the plot of the throughput, there is an average

of around 1 Mbps of incoming traffic within 10 minutes. Still,

temporal maxima could be much higher than 1 Mbps. Plots

such as this one could be used for network profiling purposes.

When comparing throughput and the number of packets, there

are a few obvious peeks visible. There can be different reasons

for those peeks. It could be legitimate traffic, for example

when students are handing in assignments shortly before a due

date. On the other hand, these peeks could also reveal

attackers.

When people are monitoring throughput and the number of

packets during a virus outbreak, one can clearly see a rise in

those characteristics. They can thus be used for profiling

purposes, but also for anomaly detection.

For the last plot, we split the numbers of packets into three

groups: packets originating in Switzerland, those from the

European Union, and the rest. To resolve the IP addresses to a

geographical location we used the hostip.info service [6]. This

service provides a simple HTTP API, which can be accessed

easily with Perl.

Most of the packets come from Switzerland; packets from EU

play the second role. As all analyzed web applications are

mainly targeted at students in Zurich in the case of Moodle

and ILIAS, respectively European research groups in the case

of BSCW, these patterns are not surprising.

Besides the plots shown here, we could look at many other

interesting characteristics. By looking at entropies of source

IPs or ports, one could detect anomalies. Low entropy means

that a lot of traffic originates from one IP or is targeted to one

destination port. This would identify different viruses and

worms [7].

On the other hand, interarrival times and flow lengths would

give more information about the browsing habits of the users.

With such statistics, one could see how long a user remains

active on the application and how many requests one makes

during a certain time interval.

These characteristics were not studied for this project but

could be other interesting fields for further analysis. Because

the initial packet level traces contain all needed information,

one could easily modify the Perl scripts and obtain such

statistics in short time.

4. CONCLUSION

While working with 52 GB of data, we experienced different

problems and difficulties. The handling of such large files is

cumbersome and requires a lot of computer power for the

analysis. Collecting packet level traces of a core router would

result in even bigger dump files. In traffic analysis, it is always

a crucial point to be able to deal with large data sets

efficiently.

Still, by using carefully designed tools, we were able to extract

interesting characteristics within a short time. Those

characteristics will help us plan and design the next generation

of e-learning and e-collaboration services, which will be able

to deal with much larger numbers of users.

5. REFERENCES

[1] BSCW, Moodle and ILIAS at ETH Zurich

http://www.let.ethz.ch

[2] tcpdump, a tool to obtain packet level traces

http://www.tcpdump.org

[3] The Perl scripts are based on Perl’s NetPacket::

Ethernet, NetPacket::IP, Net::

TcpDumpLog and Net::Dumper modules.

http://www.cpan.org

[4] gnuplot, a tool to plot big datasets efficiently

http://www.gnuplot.info

[5] DDoSVax Project, ETH Zurich
http://www.tik.ee.ethz.ch/~ddosvax/

[6] hostip.info, a GeoIP service

http://www.hostip.info

[7] Lakhina, A., Crovella, M., and Diot, C. Mining

anomalies using traffic feature distributions

ACM SIGCOMM, 2005.

APPENDIX

The plots shown in the appendix were discussed in section 3.

 0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Flows [#/10min]
F

lo
w

s
 [#

/1
0
m

in
]

B
S

C
W

 0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Flows [#/10min]

IL
IA

S

 0

 1
0

0
0

 2
0

0
0

 3
0

0
0

 4
0

0
0

 5
0

0
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Flows [#/10min]

M
O

O
D

L
E

 0

 1
0

 2
0

 3
0

 4
0

 5
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Source IP Addresses [#/10min]
S

o
u
rc

e
 IP

 A
d
d
re

s
s
e
s
 [#

/1
0
m

in
]

B
S

C
W

 0

 1
0

 2
0

 3
0

 4
0

 5
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Source IP Addresses [#/10min]

IL
IA

S

 0

 1
0

 2
0

 3
0

 4
0

 5
0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Source IP Addresses [#/10min]

M
O

O
D

L
E

 0

 5
e

+
0

7

 1
e

+
0

8

 1
.5

e
+

0
8

 2
e

+
0

8

 2
.5

e
+

0
8

 3
e

+
0

8

 3
.5

e
+

0
8

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct 0 2
0

0
0

0

 4
0

0
0

0

 6
0

0
0

0

 8
0

0
0

0

 1
0

0
0

0
0

Throughput [Bytes/10min]

Numbers of Packets [#/10min]

T
h
ro

u
g
h
p
u
t [B

y
te

s
/1

0
m

in
] / N

u
m

b
e
rs

 o
f P

a
c
k
e
ts

 [#
/1

0
m

in
]

B
S

C
W

 T
h

ro
u

g
h

p
u

t
B

S
C

W
 P

a
c
k
e

t N
u

m
b

e
rs

 0

 5
e

+
0

7

 1
e

+
0

8

 1
.5

e
+

0
8

 2
e

+
0

8

 2
.5

e
+

0
8

 3
e

+
0

8

 3
.5

e
+

0
8

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct 0 2
0

0
0

0

 4
0

0
0

0

 6
0

0
0

0

 8
0

0
0

0

 1
0

0
0

0
0

Throughput [Bytes/10min]

Numbers of Packets [#/10min]

IL
IA

S
 T

h
ro

u
g

h
p

u
t

IL
IA

S
 P

a
c
k
e

t N
u

m
b

e
rs

 0

 5
e

+
0

7

 1
e

+
0

8

 1
.5

e
+

0
8

 2
e

+
0

8

 2
.5

e
+

0
8

 3
e

+
0

8

 3
.5

e
+

0
8

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct 0 2
0

0
0

0

 4
0

0
0

0

 6
0

0
0

0

 8
0

0
0

0

 1
0

0
0

0
0

Throughput [Bytes/10min]

Numbers of Packets [#/10min]

M
O

O
D

L
E

 T
h

ro
u

g
h

p
u

t
M

O
O

D
L

E
 P

a
c
k
e

t N
u

m
b

e
rs

 0
 1

0
0

0
0

 2
0

0
0

0
 3

0
0

0
0

 4
0

0
0

0
 5

0
0

0
0

 6
0

0
0

0
 7

0
0

0
0

 8
0

0
0

0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Numbers of Packets [#/10min]
N

u
m

b
e
rs

 o
f P

a
c
k
e
ts

 [#
/1

0
m

in
]

B
S

C
W

 (C
H

)
B

S
C

W
 (E

U
)

B
S

C
W

 (O
th

e
r)

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Numbers of Packets [#/10min]

IL
IA

S
 (C

H
)

IL
IA

S
 (E

U
)

IL
IA

S
 (O

th
e

r)

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

20. Oct

21. Oct

22. Oct

23. Oct

24. Oct

25. Oct

26. Oct

27. Oct

28. Oct

Numbers of Packets [#/10min]

M
O

O
D

L
E

 (C
H

)
M

O
O

D
L

E
 (E

U
)

M
O

O
D

L
E

 (O
th

e
r)

